AWS Database Blog

Introducing Amazon Keyspaces CDC streams

Last week, AWS announced Amazon Keyspaces change data capture (CDC) streams, a new feature that captures real-time data changes in your Amazon Keyspaces tables. In this post, we discuss the architecture of Amazon Keyspaces CDC streams, explore its use cases and benefits, and provide an example demonstrating how to set up CDC streams, stream data, and capture the streamed records.

How Aqua Security automates fast clone orchestration on Amazon Aurora at scale

Aqua Security is a leading provider of cloud-based security solutions, trusted by global enterprises to secure their applications from development to production. In this post, we explore how Aqua Security automates the use of Amazon Aurora fast clones to support read-heavy operations at scale, simplify their data workflows, and maintain operational efficiency.

How TalentNeuron optimized data operations and cut costs and modernized with Amazon Aurora I/O-Optimized

For years, TalentNeuron, a leader in talent intelligence and workforce planning, has been empowering organizations with data-driven insights by collecting and processing vast amounts of job board data. In this post, we share three key benefits that TalentNeuron realized by using Amazon Aurora I/O-Optimized as part of their new data platform: reduced monthly database costs by 29%, improved data validation performance, and accelerated innovation through modernization.

How to evaluate throughput utilization for Amazon DynamoDB tables in provisioned mode

In this post, we demonstrate how to evaluate throughput utilization for DynamoDB tables in provisioned mode. Understanding this metrics helps you determine whether switching to on-demand mode is the right choice. Moving to on-demand mode, where you pay-per-request for throughput, can optimize costs, eliminate capacity planning, minimize operational overhead, and enhance overall user experience for your applications.

SQL to NoSQL: Modernizing data access layer with Amazon DynamoDB

The transition from SQL-based access patterns to a DynamoDB API-driven approach presents opportunities to optimize how your application interacts with its data layer. This final part of our series focuses on implementing an effective abstraction layer and handling various data access patterns in DynamoDB.

SQL to NoSQL: Modeling data in Amazon DynamoDB

In this post, we explore strategies for designing DynamoDB data models, including entity identification, table design decisions, and relationship modeling approaches. We examine practical scenarios comparing different modeling strategies, helping you make informed decisions for your specific use case.

SQL to NoSQL: Planning your application migration to Amazon DynamoDB

This is the first part of a series exploring how to effectively migrate from SQL to DynamoDB. We will examine how to analyze existing database structures and access patterns to prepare for migration, focusing on schema analysis, query patterns, and usage metrics that inform DynamoDB data model design.

AWS DMS validation: A custom serverless architecture

AWS DMS customers might choose not to use the data validation feature provided by the AWS DMS service due to the time it takes to complete validation after a load, a large dataset transfer or a data reload, where business requires rapid availability of data in the target environment. As a result, you might opt to perform validation manually or use a single pass full load only validation, which requires additional effort and time. In this post, we walk you through how to build a custom AWS DMS data validation solution with AWS serverless services.

Fluent Commerce’s approach to near-zero downtime Amazon Aurora PostgreSQL upgrade at 32 TB scale using snapshots and AWS DMS ongoing replication

Fluent Commerce, an omnichannel commerce platform, offers order management solutions that enable businesses to deliver seamless shopping experiences across various channels. Fluent uses Amazon Aurora PostgreSQL-Compatible Edition as its high-performance OLTP database engine to process their customers’ intricate search queries efficiently. Fluent Commerce strategically combined AWS-based upgrade approaches—including snapshot restores and AWS DMS ongoing replication—to seamlessly upgrade their 32 TB Aurora PostgreSQL databases with minimal downtime. In this post, we explore a pragmatic and cost-effective approach to achieve near-zero downtime during database upgrades. We explore the method of using the snapshot and restore method followed by continuous replication using AWS DMS.

Accelerate SQL Server to Amazon Aurora migrations with a customizable solution

Migrating from SQL Server to Amazon Aurora can significantly reduce database licensing costs and modernize your data infrastructure. To accelerate your migration journey, we have developed a migration solution that offers ease and flexibility. You can use this migration accelerator to achieve fast data migration and minimum downtime while customizing it to meet your specific business requirements. In this post, we showcase the core features of the migration accelerator, demonstrated through a complex use case of consolidating 32 SQL Server databases into a single Amazon Aurora instance with near-zero downtime, while addressing technical debt through refactoring.